Selasa, 22 November 2011

matrik bujur sangkar

MATRIKS BUJUR SANGKAR
Banyaknya baris dan kolom matriks adalah sama
A=é a b ù
ttt
ë c d û A berordo 2

KESAMAAN MATRIKS
Dua matriks A dan B dikatakan sama (ditulis A = B), jika
a. Ordonya sama
b. Elemen-elemen yang seletak sama

       A                B
é    4p+q2 ù =   é 4     2  ù
ë 5p+q   5 û
     ë 7   q+3 û
q + 3 = 5   ® q =2
5p + q = 7 ® p = 1


MATRIKS TRANSPOS                                               
                                                  _
Transpos dari suatu matriks A (ditulis A atau A' atau At) adalah matriks yang elemen barisnya adalah elemen kolom A, dan elemen kolomnya adalah elemen baris A.
A=é a b c ù
ttt
ë d e f û 2x3
At =é a d ù
      
ê b e ú
tt t  
ë c f  û 3x2

ordo

ORDO
ORDO suatu matriks ditentukan oleh banyaknya baris, diikuti oleh banyaknya kolom.
A=é a b c ù
ttt
ë d e f  û ordo matriks A2x3
Banyaknya baris  = 2 ; baris 1 : a b c ; baris 2 : a b c
Banyaknya kolom = 3
kolom 1 : é a ù
ttttttttttt
ë d û
kolom 2 : é b ù
ttttttttttt
ë e û
kolom 3 : é c ù
ttttttttttt
ë f û
keterangan:  A2,1 = elemen baris ke 2 ; kolom ke 1

Selasa, 01 November 2011

deret dan baris

  1. BARISAN GEOMETRI

    U1, U2, U3, ......., Un-1, Un disebut barisan geometri, jika

    U1/U2 = U3/U2 = .... = Un / Un-1 = konstanta

    Konstanta ini disebut pembanding / rasio (r)

    Rasio r = Un / Un-1

    Suku ke-n barisan geometri

    a, ar, ar² , .......arn-1
    U1, U2, U3,......,Un

    Suku ke n Un = arn-1
    ® fungsi eksponen (dalam n)


  2. DERET GEOMETRI

    a + ar² + ....... + arn-1 disebut deret geometri
    a = suku awal
    r = rasio
    n = banyak suku


    Jumlah n suku

    Sn = a(rn-1)/r-1 , jika r>1
          = a(1-rn)/1-r , jika r<1
       ® Fungsi eksponen (dalam n)

    Keterangan:

    1. Rasio antara dua suku yang berurutan adalah tetap
    2. Barisan geometri akan naik, jika untuk setiap n berlaku
      Un > Un-1
    3. Barisan geometri akan turun, jika untuk setiap n berlaku
      Un < Un-1

      Bergantian
      naik turun, jika r < 0

    4. Berlaku hubungan Un = Sn - Sn-1
    5. Jika banyaknya suku ganjil, maka suku tengah
                _______      __________
      Ut =
      Ö U1xUn    = Ö U2 X Un-1      dst.  

    6. Jika tiga bilangan membentuk suatu barisan geometri, maka untuk memudahkan perhitungan, misalkan bilangan-bilangan itu adalah a/r, a, ar


  3. DERET GEOMETRI TAK BERHINGGA

    Deret Geometri tak berhingga adalah penjumlahan dari

    U1 + U2 + U3 + ..............................

    ¥
    å
    Un = a + ar + ar² .........................
    n=1

    dimana n ® ¥ dan -1 < r < 1 sehingga rn ® 0

    Dengan menggunakan rumus jumlah deret geometri didapat :

    Jumlah tak berhingga    S¥ = a/(1-r)

    Deret geometri tak berhingga akan konvergen (mempunyai jumlah) untuk -1 < r < 1

    Catatan:


    a + ar + ar2 + ar3 + ar4 + .................

    Jumlah suku-suku pada kedudukan ganjil

    a+ar2 +ar4+
    .......                     Sganjil = a / (1-r²)

    Jumlah suku-suku pada kedudukan genap

    a + ar3 + ar5 + ......                  Sgenap = ar / 1 -r²

    Didapat hubungan : Sgenap / Sganjil = r